| Contact Us

Department of Chemistry and Chemical Biology, Harvard University, USA
Charles M. Lieber

cml@cmliris.harvard.edu

 


Abstract

Over the past decade extensive studies of single semiconductor nanowire and nanowire array photovoltaic devices have explored the potential of these materials as platforms for a new generation of efficient and cost-effective solar cells. This feature review discusses strategies for implementation of semiconductor nanowires in solar energy applications, including advances in complex nanowire synthesis and characterization, fundamental insights from characterization of devices, utilization and control of the unique optical properties of nanowires, and new strategies for assembly and scaling of nanowires into diverse arrays that serve as a new paradigm for advanced solar cells.


Advanced Membranes and Porous Materials Center at King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
Zhiping Lai

zhiping.lai@kaust.edu.sa


Abstract

Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few of these materials could be manufactured into high-performance asymmetric or composite membranes. We report here the first mixed matrix composite membrane made of commercially available poly (amide-b-ethylene oxide) (Pebax®1657, Arkema) mixed with the nano-sized zeolitic imidazole framework ZIF-7. This hybrid material has been successfully deposited as a thin layer (less than 1 μm) on a porous polyacrylonitrile (PAN) support. An intermediate gutter layer of PTMSP was applied to serve as a flat and smooth surface for coating to avoid polymer penetration into the porous support. Key features of this work are the preparation and use of ultra-small ZIF-7 nano-particles (around 30–35 nm) and the membrane processability of Pebax®1657. SEM pictures show that excellent adhesion and almost ideal morphology between the two phases has been obtained simply by mixing the as-synthesized ZIF-7 suspension into the Pebax®1657 dope, and no voids or clusters can be observed. The performance of the composite membrane is characterized by single gas permeation measurement of CO2, N2 and CH4. Both, permeability (PCO2 up to 145 barrer) and gas selectivity (CO2/N2 up to 97 and CO2/CH4 up to 30) can be increased at low ZIF- loading. The CO2/CH4 selectivity can be further increased to 44 with the filler loading of 34 wt%, but the permeability is reduced compared to the pure Pebax®1657 membrane. Polymer chain rigidification at high filler loading is supposed to be a reason for the reduced permeability. The composite membranes prepared in this work show better performance in terms of permeance and selectivity when compared with asymmetric mixed matrix membranes described in the recent literature. Overall, the ZIF 7/Pebax mixed matrix membranes show a high performance for CO2 separation from methane and other gas streams. They are easy to fabricate, which makes them attractive for industrial scale gas separation.